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Abstract. The question of localisation is examined by employing a significant improved 
localisation function method. Results are presented for the localisation function L ( E )  and 
its upper limit function L"(E) for a simple cubic-lattice tight binding model with zero 
disorder. We find, in contrast to the two-dimensional case, that L ( E )  is clearly larger than 
1 (except of course at the end of the band) and that L*(E)  is almost equal to L(E) .  Thus a 
critical amount of disorder must be exceeded before the localisation sets in .  Furthermore 
L*(E) ,  which is easier to calculate, is a reasonable approximation to L(E) .  

Recently Soukoulis and Economou (1980), using a significantly improved localisation 
function method L ( E )  (Economou and Cohen 1970,1972. Licciardello and Economou 
1975)> demonstrated that for a periodic two-dimensional (2D) lattice the true L ( E )  
inside the band is equal to 1 within numerical uncertainties. As the disorder increases 
from zero, one expects that L ( E )  < 1 for all E:  implying that all states are localised in a 
2D system with non-zero disorder in agreement with recent scaling theories (Abrahams 
etall979). On the other hand, the upper limit function L"(E) ,  which is calculated within 
the strong-correlations assumption (Economou and Cohen 1970,1972), is much higher 
than L ( E ) .  The big difference between L " ( E )  and L ( E )  in a 2D system suggests that the 
localisation of eigenstates in the weak disorder limit is due to long-range multiple- 
scattering effects which produce very slowly decaying states. Numerical work in finite 
samples (Weaire and Kramer 1980) indicates that 'localised' states appear only when 
the disorder exceeds a critical value which is approximately given by L " ( E )  = 1. This 
led us to conjecture that L"(E)  4 1 implies strong localisation, while L ( E )  < 1 < 
L"(E)  implies veryweak localisation which is not revealed in the numerical work. 

The purpose of this Letter is to report results for L ( E )  and ,!,*((E) for a periodic 3D 
system. These results show, in contrast to the 2D case, that L ( E )  is clearly larger than 
1 (except of course at the end of the band) and that L*(E) is almost equal to L(E) .  Thus 
a critical amount of disorder must be exceeded before localisation sets in. Furthermore 
L*(E),  which is easier to calculate, is a reasonable approximation to L ( E ) .  

The localisation function L ( E )  which is less (more) than 1 in the regions of the 
spectrum consisting of localised (propagating) eigenstates is given by 

L(E)  = N + =  lim 1 2 j P + l t j ' l ? ( ~ )  11"~  (1) 

where Vis the off-diagonal matrix elements V ,  of the tight binding Hamiltonian (Ander- 
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The superscripts 0, nl  . . . denote that €0 = E,,,  = . . . = m .  The summation over j in 
equation (1) is over the set of all sites nl ,  122 . . . n~ which form self-avoiding paths starting 
and ending at site 0. The t;" in equation (2) was expressed (Soukoulis and Economou 
1980) as a determinant of Green's functions with no sites excluded. G,, = ( n /  ( I - 
H)-' 1 m),  where the sites n and m belong to the self-avoiding path. In the present case 
of zero disorder, C,,, are the periodic Green's functions, which can be calculated very 
accurately. We also define the quantity L " ( E )  as 

Clearly L*(E)  2 L ( E ) .  The equality holds for E at the band edge (or outside it). The 
assumption of strong ccrrelations (Economou and Cohen 1970, 1972) puts L*(E)  = 
L(E).  It was shown by Soukoulis and Economou (1980) that the strong-correlations 
assumption is not valid for a periodic 2D lattice. Taking into account that (M,,,)'"-+ K 
as N-, C O ,  where M N  is the total number of self-avoiding polygons and K is the connec- 
tivity of the lattice ( K  = 4.6826 for the cubic lattice), we can write 

where the angular brackets indicate the average overalljof order N .  We have calculated 
the quantity (It,?(E) up to N = 8 by evaluating explicitly det{Cr} for all the self- 
avoiding closed paths (polygons) up to N = 8. The calculations are facilitated because 
many different paths give (due to symmetry considerations) the same value for 
det{G:}: e.g. to obtain the contribution of the 3312 self-avoiding polygons of the order 
N = 8 one needs to evaluate only 11 distinct determinants of order 8 x 8. We found that 
( 1  tjw(E) becomes weakly dependent on N as N increases; thus the N-+ limit can 
be obtained rather accurately, as shown in figure 1. 

The Green's functions G,,(E + b) for an infinite cubic lattice were calculated by 
some well known recursion relations ( Horiguchi 1971). We were able to calculate G,, 
with an accuracy up to the seventh significant figure. Details will be presented elsewhere, 

In figure 2 we present our results for L*(E)  against E according to the method we 
described above. A test of the accuracy of our calculation is the behaviour of L*(E)  for 
E 2 ZV, where L*(E)  = L ( E ) ;  L ( E )  must approach 1 monotonically as E 4  ZV', 
where 2 = 6 is the coordination number for the cubic lattice. Figure 2 shows that this is 
actually the case with a less than 1% numerical uncertainty. 

The interesting quantity to calculate is L ( E )  and not its upper limit L*(E) .  To 
calculate L ( E )  one needs the Green's functions G,, for real energies. We can obtain 
them only by considering a finite-size system; then one faces the problem of having large 
fluctuations in the Green's functions depending on how close the energy E lies on an 
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Figure 1. The upper limit L * ( E )  of the localisation functions for various energies E is 
obtainedbyextrapolatingKV( IfjY'(E) I ) ' ! *  tothe l iN = Olimit. ValuesofEi2Vareasfollows: 
~ 0 ; 0 0 . 5 ; 0 1 . 0 ; ~ 1 . 5 ; A 2 . 0 ; 0 3 . 0 ; A 4 . 0 .  

eigenenergy of the finite system. Of course, in the N -  CC limit this problem disappears. 
To overcome this difficulty which is present in our case because the maximum N we 
consider is 8, we have applied the following procedure. We generated R random energies 
inside a narrow energy region around E(R = 20-40). The results are insensitive to the 
energy width provided that it is a few times the average level spacing. We only kept 

1 -  

Figure2. Thelocalisation function L ( E )  (fullcurve) andits upperlimit L*(E)  (brokencurve) 
against EI2V for a cubic lattice in the limit of infinitesimal disorder. Ar the band edges 
( E  = *ZV,  where Z = 6) L*(E)  = L(E)  = 1. The full squares represent results for L*(E)  
for an infinite-sized system and the full circles are results for L ( E )  from finite systems; bars 
indicate estimated errors. 
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those energies for which lGoo(E) 1 are not higher than two or three times 1 Goo(E + is) I 
for the infinite periodic lattice. We impose periodic boundary conditions on our periodic 
finite systems (13 x 13 X 13, 19 X 19 x 19, 23 X 23 x 23 sites). Having calculated the 
Green's functions Gnm(E) we evaluated-through equation (2)+'(E) for all self-avoid- 
ing polygons up to order 8. We obtained L ( E )  and L"(E)  by extrapolating to N-. CC 

the quantities KVI (t)*)(E)) 1'" and K V m - l ' "  respectively. The bars indicate log- 
arithmic averages over the R random energies around E. Because we are dealing with 
finite systems and real energies the errors associated with the A'-+ CQ extrapolation were 
significantly larger than in the case of the infinite system for most of the energies inside 
the band (see figure 2). These errors can be decreased either by calculating self-avoiding 
polygons of higher order or by increasing the number R of random energies one gen- 
erates. The results for the finite system were checked by comparing LA@) (not shown 
in figure 2) with the L*(E) obtained for the infinite system. The agreement is reasonably 
good. L ( E )  was found to be a little less than L*(E) but considerably higher than 2, as 
oneseesinfigure2. It isclearfromthisworkthatinthepresent 3DsystemL(E) = ,!,"(E), 
which implies that the strong-correlations assumption does not introduce significant 
errors. Furthermore, the results in figure 2 clearly show that a finite amount of disorder 
is needed to localise all the eigenstates in 3D systems. 
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